Heat of dilution measurements for four aminobutyric acids will be reported soon.

Summary

Intermediate heats of dilution of aqueous solutions of α - and β -alanine have been measured over the concentration range from 1.3 to 0.001m at 25°. By extrapolation to zero concentration, relative apparent molal heat contents have been evaluated and relative partial molal heat contents have been calculated.

TABLE I

MOLAL HEAT CAPACITY OF UREA

PITTSBURGH, PENNSYLVANIA

RECEIVED DECEMBER 21, 1945

[CONTRIBUTION FROM THE WILLIAM G. KERCKHOFF LABORATORIES OF THE BIOLOGICAL SCIENCES, CALIFORNIA INSTITUTE OF TECHNOLOGY]

Thermal Data. XIX. The Heat Capacity, Entropy and Free Energy of Urea

BY ROBERT A. RUEHRWEIN AND HUGH M. HUFFMAN¹

Urea is of considerable interest as an organic compound and also because of the important role it plays in physiological processes. Lewis and Burrows² studied the equilibrium between urea, carbon dioxide, ammonia and water and calculated the free energy change in the reaction

 $CO_2(g) + 2NH_3(g) = CO(NH_2)_2(S) + H_2O(g)$

A comparison of third law and equilibrium free energy data is of value in helping to settle the question of randomness in the crystal lattice of urea due to hydrogen bonding. Urea has also been reported³ to undergo higher order transitions in the temperature ranges -6 to 5° and 25 to 37° .

In this paper we have reported the results of our investigation of the heat capacity of urea over the temperature range 19 to 320° K.

Experimental

Apparatus.-The measurements were made in an aneroid adiabatic calorimeter, the details of which have been published⁴ so that only a brief description need be given here. The calorimeter was made of copper. Temperature measurements were made with a platinum resistance thermometer of laboratory designation H-8. All electrical measurements were made with a "White" double potentiometer in conjunction with a sensitive galvanometer and calibrated resistors. Time was measured with an electric stop clock. The energy measurements were made in tric stop clock. The energy measurements were made in terms of the international joule and converted to conven-tional calories by dividing by 4.1833. The precision of the measurements was approximately $\pm 0.1\%$. **Material.**—J. T. Baker C. P. urea was dissolved in re-distilled water at 60° and then allowed to crystallize in a cold room at about 0°. The crystals were filtered from the methor liquor out dried to constant waight in phosphorus

mother liquor and dried to constant weight in phosphorus pentoxide vacuum.

The material was lightly compressed into the calorimeter in layers, about 2-mm. thick, separated by thin copper disks which were in thermal contact with the walls of the calorimeter and the reëntrant thermometer well. The cover was then soldered in place, helium admitted to the gas space through a small tube in the cover, which was finally closed with a drop of soft solder.

Results

In Table 1 we have listed the experimentally determined specific heats over the temperature

(1) Present address: Bureau of Mines, Bartlesville, Okla.

(2) G. N. Lewis and G. H. Burrows, THIS JOURNAL, 34, 1515 (1912).

(3) V. A. Sokolov, C. A., 34, 57335 (1940).

(4) Ruehrwein and Huffman. This JOURNAL, 65, 1620 (1943).

м	ol. weight	t = 60.05	8; 0°C. =	273.16 °	' К.
		C_{p} , cal./			C_p ,
<i>Τ</i> , °Κ.	ΔT	degree	<i>Т</i> , °К.	ΔT	cal./ degree
19.45	0.994	1.139	152.43	11.180	13.031
20.53	1.166	1.286	163.35	10.676	13.715
22.09	1.947	1.529	173.81	10.254	14.372
25.25	4.384	2.026	183.87	9.868	15.007
29.56	4.232	2.719	193.57	9.536	15.615
33.36	3.371	3.324	202.95	9.238	16.204
36.82	3.551	3.858	210.50	5.753	16.698
40.68	4.160	4.414	217.75	8.743	17.130
44.57	3.626	4.950	226.38	8.527	17.648
48.52	4.281	5.477	234.81	8.324	18.165
52.59	3.857	5.956	243.04	8.134	18.682
55.97	2.705	6.348	248.97	2.074	19.082
56.72	4.390	6.429	251.04	2.062	19.209
59.42	4.205	6.722	251.09	7.954	19.197
63.48	3.904	7.141	266.44	7.615	20.197
67.27	3.677	7.492	268.66	3.904	20.357
72.21	6.196	7.905	272.54	3.858	20.640
78.18	5.757	8.386	274.00	7.460	20.712
83.77	5.415	8.829	276.39	3.822	20.854
87.92	6.226	9.105	281.42	7.329	21.161
89.06	5.157	9.192	282.06	7.528	21.220
93.02	4.991	9.471	288.72	7.202	21.619
99.34	7.637	9.825	289.52	7.382	21.706
106.79	7.259	10.273	296.83	7.247	22.172
113.89	6.945	10.698	304.02	7.115	22.648
121.31	7.904	11.148	311.07	6.985	23.089
130.10	9.940	11.669	318.01	6.877	23.544
140.95	11.765	12.342			

range 19 to 320° K. Values at integral temperatures, taken from a smooth curve through all of the data, are given in Table II. An excess absorption of energy, above the regular curve, was observed in the temperature range 255 to 265° K. Since this temperature was considerably below that reported by Sokolov³ for the second order transition, we suspected that it was probably due to some other cause. A calculation showed that the energy absorption was in the temperature range where a saturated aqueous solution of urea would be expected to melt. Hence the presence of

Iolal	НЕАТ САРАСІ	TY OF UREA AT	INTEGRAL TEMP	ERA-
TURES				
		= 60.058; 0°C.		
Τ, °	C_p , K. cal./deg	gree T, °K	$C_p,$ cal./degree	ee
2	0 1.2	1 140	12.28	
2	5 1.9	9 150	12.88	
3	0 2.7	9 160	13.51	
3	5 3.5	8 170	14.13	
4	0 4.3	2 180	14.76	
4	5 5.0	2 190	15.39	
5	0 5.6	5 200	16.02	
5	5 6.2	4 210	16.64	
6	0 6.7	9 220	17.26	
6	5 7.2	8 230	17.87	
-7	0 7.7	3 240	18.49	
7	5 8.1	4 250	19.14	
8	0 8.5	4 2 60	19.79	
8	5 8 .9	1 270	20.44	
9	0 9.2	5 280	21.09	
9	5 9.5	7 290	21.72	
10	0 9.8	7 298.1	6 22.26	
11	0 10.4	6 300	22.38	
12	0 11.0	7 310	23.02	
13	0 11.6	7 320	23.77	

TABLE II MOLAL HEAT CAPACITY OF UREA AT INTEGRAL TEMPERA-TURES

water was suspected. The calorimeter was opened and evacuated for a considerable period of time without any significant change in mass. A rough calculation was made of the amount of water present and this amount was added to the calorimeter.

Additional measurements over the same temperature range now showed that the excess energy absorption was approximately doubled. Our conclusion was that water had been present in the original sample. We estimated the amount of water to be 0.052 g. and the data were corrected for this amount on the assumption that it behaved as pure water. This assumption may tend to decrease slightly the accuracy of our measurements.

Discussion

The experimental data have been utilized to calculate the entropy of urea at 298.16° K. The results of this calculation are summarized in Table III.

TABLE III

THE MOLAL ENTROPY OF UREA, CAN	L. DEGREE ⁻¹
Mol. weight = 60.058 ; 0°C. = 2	73.16° K.

			Р, Н & В
S_{20° (Debye, 4° freedom = 154.1) =	0.434	
ΔS_{20-90} (graphical)	=	7.299	
[S ₉₀ ° ·	=	7.733]	7.93
$\Delta S_{93-298,16}$ (graphical)	=	17.263	17.25
S298.16	-	25.00 ± 0.05	25.2

Parks, Huffman and Barmore⁵ measured the heat capacity of urea over the temperature range

(5) G. S. Parks, H. M. Huffman and M. Barmore, THIS JOURNAL, 55, 2733 (1933).

90 to 298° K. and calculated the entropy at 298.1° K. This calculation involved an empirical extrapolation over the temperature range 0 to 90° K. The constants in the empirical extrapolation formula they used were derived from data on compounds that were considerably different in composition from urea. For this reason we have thought it of interest to compare their data with that of this research and have included it in Table III. The extrapolated entropy of Parks, Huffman and Barmore⁵ at 90° K. is about 0.2 entropy unit higher than determined in this investigation.

The heat of combustion of urea was determined by Huffman.⁶ The value reported corrected, for an error in the heat of combustion of benzoic acid⁷ which was used as the calorimetric standard, becomes $-\Delta H_{(298,16^{\circ}\text{K})} = 151,053$ calories/mole. This datum has been used in conjunction with the entropy reported here to calculate the free energy of formation of urea at 298.16° K. The data are summarized in Table IV. In making this calculation, we have used the values^{8a} 1.361, 31.211, 49.003 and 45.767 calories per degree for the molal entropies of graphitic carbon, hydrogen, oxygen and nitrogen, respectively, and the values^{8b} 68,317 and 94,052 calories for the molal heats of formation of liquid water and gaseous carbon dioxide, respectively.

Lewis and Burrows² studied the equilibrium in the reaction

 $CO_2(g) + 2NH_3(g) = H_2O(g) + CO(NH_2)_2(solid)$

From their data they calculated for this reaction

TABLE IV

THE MOLAL FREE ENERGY OF FORMATION OF UREA AT 298.16° K.

Heat of comb., ΔH° , kcal.	-151.053
$\Delta H_{ m f}^{ m \circ}$, kcal.	- 79.634
$\Delta S_{\rm f}^{\circ}$, cal./degree	- 109.056
ΔF_t° , kcal.	- 47.118

TABLE V

Synthesis of Urea Molal Free Energy from Thermai Data at 298.16°

- (1) $N_2(g) + CO_2(g) + 2H_2O(1) = \frac{3}{2}O_2 + CO(NH_2)_2;$ $\Delta H = 151,053 \text{ cal.}^{\circ}$
- (2) $2NH_3(g) = N_2(g) + 3H_2(g); \Delta H = 21,860 \text{ cal.}^b$
- (3) $2H_2(g) + O_2(g) = 2H_2O(1); \Delta H = 136,635 \text{ cal.}^c$
- (4) $H_2(g) + 1/_2O_2(g) = H_2O(g); \Delta H = -57,798 \text{ cal.}^c$
- (5) $\Sigma = CO_2(g) + 2NH_4(g) = H_2O(g) + CO(NH_2)_2(s);$ $\Delta H = -21,520 \text{ cal.}$
- $\Delta S(\text{react. 5}) = 24.996 + 45.106 2(46.034) (51.061); \\ \Delta S = -73.027^{\texttt{8b,6}} \text{ cal./degree}$

$$-T \Delta S = 21,774$$

$$\Delta F = 254$$

^a Reference 7. ^b Reference 6. ^c Reference 8a.

(6) H. M. Huffman, ibid., 62, 1009 (1940).

⁽⁷⁾ R. S. Jessup, Bur. Standards J. Research, 29, 247 (1942).

⁽⁸⁾ American Petroleum Institute Research project 44 at the National Bureau of Standards. Selected values of the properties of hydrocarbons: (a) Table 0₄; July 31, 1944, (b) Table 0_n; May 31, 1945.

at 25°, $\Delta F = 288$ calories. Using the equation $\Delta F = \Delta H - T \Delta S$ and the best available data we find $\Delta F = 254$ calories. The calculation and the sources of the data used are summarized in Table IV. It is interesting to note that there are available two values for the heat of formation of ammonia one of which was obtained from thermal data and the other from equilibrium measurements. Stephenson and McMahon⁹ have recently recalculated the available equilibrium data. From equilibrium data they find for the formation of ammonia at 25° $\Delta H = -10,930$ and from thermal data $\Delta H = --11,040$. If the latter datum is used we find for the reaction given above $\Delta F = 474$ calories.

The agreement of the free energy calculated from the best thermal data with that calculated from the equilibrium data of Lewis and Burrows² indicate that there is no randomness in the struc-

(9) Stephenson and McMahon, THIS JOURNAL, 61, 407 (1939).

ture of urea which persists to extremely low temperatures.

The measurements were extended to 48° in hopes that we would obtain evidence of the second order transitions reported by Sokolov.³ No anomalies in the specific heat curve were observed over the entire range with the exception of that previously discussed which we believe has been accounted for in a satisfactory manner.

Summary

The heat capacity of urea has been measured over the temperature range 19 to 320° K.

The molal entropy and free energy of formation at 298.16° K. have been calculated.

Excellent agreement between third law values and equilibrium values was demonstrated for a synthesis of urea.

BARTLESVILLE, OKLA.

RECEIVED MAY 6, 1946

[CONTRIBUTION FROM THE BALLISTIC RESEARCH LABORATORIES]

Catalytic Hydrogenolysis of Nitrate Esters

By LESTER P. KUHN

The hydrolysis of nitrate esters to the corresponding alcohols is usually accompanied by undesirable oxidation reactions wherein the alcohols are converted to aldehydes and other products.¹ Hence denitration is usually effected by reducing agents such as tin and hydrochloric acid,¹ zinc and iron in acetic acid,² and ammonium polysulfide.³ These methods leave much to be desired when dealing with certain sugar nitrates in that it is difficult to separate the free sugar from the inorganic salts in good yield. Also other groups may be attacked by the rather vigorous conditions employed.

The present work shows that nitrate groups may be smoothly reduced by catalytic hydrogenolysis, a method which has not been previously reported.

To determine the most effective catalyst a series of experiments was made using amyl nitrate and hydrogen at 1500 p.s.i. The results are given in Table I.

Because of the high temperature required with the copper-chromium catalyst much decomposition ensues. The nickel and platinum catalysts are also unsatisfactory because they reduce the nitrogen to ammonia to which the unreacted nitrate groups are sensitive and side reactions occur. If the reaction is stopped when the pressure change is equivalent to two moles of gas per mole of nitrate, both ammonia and nitrate are present, indicating

(1) Sidgwick, "Organic Chemistry of Nitrogen," new edition revised by Taylor and Baker, Oxford University Press, 1942, p. 8.

(2) DeWar and Fort, J. Chem. Soc., 495 (1944).

(3) Bock, Simmerl and Johnston. J. prakt. Chem., 158, 8-20 (1941).

TABLE I

Hydrogenolysis of Amyl Nitrate

Catalyst	<i>T</i> , °C.	Time, hr.	Form of nitrogen in product	Pressure change in moles of gas/mole of nitrate	
Copper-					
chromium	160-18 0	3			
Raney nickel	60-70	1	Ammonia	3.5-4	
Platinum	60-70	1	Anmonia	3.5 - 4	
Palladium on calcium					
carbonate	25	0.25	N_2	2	

that it is impossible to halt the reaction at the elementary nitrogen stage. If acid is added to neutralize the ammonia that is formed, no reaction takes place.

In contrast to these catalysts, the palladium on calcium carbonate is highly satisfactory. The reaction appears to proceed according to the equation

 $2RONO + 5H_2 \longrightarrow 2ROH + N_2 + 4H_2O$

Actually, two and one-half moles of hydrogen are consumed per mole of nitrate, but since one-half mole of nitrogen is formed the net pressure change is two moles of gas per nitrate. The equation is in harmony with the observed pressure change and the facts that the solution after hydrogenolysis is neutral and gives negative tests for nitrate, nitrite, and hydroxylamine.

Palladium on charcoal is a more active catalyst than palladium on calcium carbonate. In the presence of the former at 1,500 pounds pressure of hydrogen the nitrate is reduced to ammonia.